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Abstract—This paper describes how basic concepts from infor-
mation theory can be used to analyze deception. A simple channel
model known as a Z-channel provides a fundamental description
of deception, and allows deception performance to be measured
as the conditional entropy, or equivocation, of the channel. The Z-
channel model suggests that associated with any given deception
is another deception we call the “symmetric complement” of the
given deception. A deception deployed along with its symmetric
complement can provide implementation and/or performance
benefits to a deceiver, but can also open counterdeception
opportunities for the deception target. Finally, two deception-
based computer security techniques are described and analyzed.
A fake honeypot can be used to inoculate a computer against
intrusions, and spoofing channels provide means to safely and
effectively respond to computer intrusions. The spoofing channel
deception is of fundamental interest because it is equal to its
symmetric complement.

Index Terms—deception, computer security, information the-
ory, spoofing channels

I. INTRODUCTION

One of the most powerful ways of countering an adversary
is through deception. Intuition suggests that deception and
communication are in a sense “opposites” or “duals,” but any
relationship that may exist has never been made precise. This
is unfortunate because sophisticated and useful mathematical
tools have been developed to characterize communication
systems [1], yet few if any techniques currently exist for the
mathematical analysis of deception [15].

In this paper we use elementary concepts from informa-
tion theory to model deception and to characterize deception
performance. In addition, we present two ideas for computer
security that arose from our study of deception and information
theory. Our work is based on the idea that deception is the
act of manipulating observations made by a deception target
so as to imply a specific false version of reality. This allows
the average performance of a deception to be evaluated as if
it were a communication channel, with the deceivers actions
playing the role of noise.

It is important to note that our approach gives information
only about the average effectiveness of a deception, and not
about the outcome of any particular deception encounter.
In a similar way, analysis of a communication system will
usually not reveal whether a specific symbol transmitted at
a specific instant will be received correctly. Rather, in both
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cases performance is characterized only in terms of averages.
Our model is thus most useful for characterizing deceptions
that are applied repeatedly, such as spam, phishing ploys, and
computer security methods such as those presented in this
paper.

Our paper is structured as follows. Section II establishes
terminology and introduces some of the main concepts used
in the remainder of the paper. Section III gives a definition
for deception, and shows how the definition conforms to a
channel model known as a Z-channel. Examples illustrate
how common deceptions can be mapped to the Z-channel
model. Section IV shows how the mathematical tools used
to describe communication systems, in particular conditional
entropy, can be used with the Z-channel model to quantify
deception performance.

The Z-channel model of deception suggests that associated
with a given deception is a closely related deception we refer
to as a symmetric complement. The link between a deception
and its symmetric complement is described and illustrated in
Section V. Finally, in Section VI we describe two software
tools, the fake honeypot and the spoofing channel, that use
deception to support computer security.

II. A SKETCH OF COMMUNICATION TERMINOLOGY &
CONCEPTS

Our discussion of deception will rely heavily on abstract
representations of binary communication systems like those
in Figures 1 and 2. In informal terms, these figures describe
two different ways in which random errors can be introduced
into a stream of binary symbols. Figure 1 shows a Z-channel,
which can introduce only one type of error: the transmitted
symbol B will be received as Ã at a rate of pBA and as B̃ at
a rate of 1− pBA, but the symbol A will always be received
as Ã. Figure 2 shows what we will call a Binary Symmetric
Channel, or BSC, which can introduce two types of errors: a
transmitted symbol A can be received as either Ã or B̃, and
a B can be received as either Ã or B̃. Clearly, the Z-channel
is just a special case of the BSC. (In common usage the term
“Binary Symmetric Channel” refers only to the case where
pAB = pBA, while we will use the term to refer to the case in
which both pAB and pBA are non-zero, but are not necessarily
equal.)

Channel models like those in Figures 1 and 2 are fully
characterized by the transition probabilities and by the a priori
input probabilities pA and pB = 1− pA, and by the transition
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Fig. 1. An abstract representation of a discrete binary communication
channel known as a Z-channel. This is a special case of the channel
shown in Figure 2.

probabilities pAB and pBA. However, these probabilities can
be cast into a different and extremely useful form. This
alternate form provides essentially a count of the number of
sequences that satisfy a given set of probabilistic constraints.
As a rough introduction, consider the number of sequences
of A’s and B’s consisting of a single B and nine A’s: there
are

(10
1

)
= 10 such sequences. Similarly, there are

(10
2

)
= 45

sequences consisting of two B’s within a sequence of eight
A’s, and there are

(10
5

)
= 252 sequences consisting of five

B’s and five A’s. As the number of B’s increases further, the
number of possible sequences decreases.

Of course, there is nothing significant about sequences
of length ten, and counts of this sort can be carried out
for sequences of any length. Thus the number of ordered
sequences of length N consisting of pN copies of the symbol
A’s and (1−p)N copies of the symbol B’s is

( N
pN

)
. It turns out

that when N becomes large, the number of possible sequences
increases exponentially, and the specific rate of exponential
increase can be expressed as a simple function of p. This
rate of increase, expressed on a per symbol basis, is denoted
entropy, and takes the form

H(p) ≡ lim
N→∞

log
(

N

pN

)
/N

= −p log(p)− (1− p) log(1− p). (1)

The simplified form of H(p) for large N comes about as a
direct result of Stirlings formula (Goldman, Appendix 2). In
concrete terms, Equation 1 says that when N is large, there
are about 2N ·H(p) binary sequences of length N consisting
of pN copies of the symbol A and (1 − p)N copies of the
symbol B.

The total number of binary sequences of length N is 2N ,
and binary sequences with symbols of probability p and 1−p,
and with length N large, are characterized by 0 ≤ H(p) ≤ 1.
Thus the ratio of binary sequences characterized by a given
symbol probability p to all possible binary sequences is
2N ·H(p)−N . When p < 1/2, this ratio can be made arbitrarily
small by increasing N . Also important is that all 2N ·H(p)

binary sequences with symbol probability p are equally likely.
This makes sense because each sequence is composed of the
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Fig. 2. An abstract representation of a discrete binary communication
system. We refer to this as a Binary Symmetric Channel, even when
pAB != pBA.

same numbers of each type of symbol: only the arrangements
of symbols differ.

We can use ideas similar to those associated with Equation 1
to characterize channel behaviors. Informally, this comes about
because a given channel input can, due to random transitions,
or “noise,” generate any one of many different outputs, and we
can count the number of inputs that could have caused a given
output. A channel that is good for communication will have
very few input sequences implied by a given output, while
a poor channel will allow almost any input to generate any
output.

More specifically, for a long received sequence at the output
of Figure 1, each received B̃ could have been caused by
transmission of either an A or B. The conditional probabilities
p(A|Ã) and p(B|Ã) = 1 − p(A|Ã) can be used in Equation
1 to count the input sequences associated with the Ã’s, and
similar computations can, in general, be carried out for the
B̃’s. An average of these counts, weighted according to the
relative frequencies of Ã’s and B̃’s, yields a count of the inputs
that could have caused a given output.

An expression of this type is denoted H(X|Y ), and is called
the conditional entropy or the equivocation of a channel. The
conditional entropy H(X|Y ) of a channel is closely related
to the capacity of the channel, and is a function of only the
input symbol probabilities and the transition probabilities. As
with unconditioned entropies, we can say (roughly) that for
large N , an input of N symbols can generate about 2N ·H(Y |X)

output sequences, and an output of N symbols could have been
caused by about 2N ·H(X|Y ) input sequences.

This brief sketch of communication concepts can be summa-
rized as follows. A source can be characterized by the number
of long sequences of length N that it can generate, subject to
the probabilities that define the source. Likewise, a channel
can be characterized by the number of output sequences it
can generate for a given input of N symbols. Both of these
quantities grow exponentially with N , and the entropy (for
sources), or conditional entropy (for channels), specifies the
specific rate of exponential growth with N .
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III. A DECEPTION MODEL BASED ON THE Z-CHANNEL

Our analysis technique for deception is fundamentally based
on the following definition. The term deception target, or just
target, refers to anyone who has a deception applied against
them, whether or not they “fall” for it. This definition is based
on page 2 of [2].

Definition 1: Deception is the presentation of a specific
false version of reality by a deceiver to a target for the purpose
of changing the targets actions in a specific way that benefits
the deceiver.

That is, deception is the imposition of a specific false version
of reality onto an adversary: a deceiver does not simply cloak
reality in an obscuring fog, but rather replaces reality with a
specific and carefully created false version. Deception is thus
quite distinct from the denial of information to an adversary,
and it is quite distinct from efforts that direct an adversary in
a random, haphazard direction. As stated eloquently in [15], a
successful deception will make an adversary “. . . quite certain,
very decisive, and wrong” [emphasis in the original].

This definition can be made precise. If an environment
can be in any one of several states, and if agents within
the environment use sensory data to infer the state of the
environment, then the a deceivers actions consist abstractly
of manipulating sensory data such that observations made by
the target will suggest a specific incorrect version of reality.

These ideas can be interpreted in terms of Figure 1. The
possible values for a state variable of interest are denoted
on the left by A and B, and the inferences by the deception
target about that value are denoted on the right by Ã and B̃.
Under normal circumstances, a target will be able to correctly
infer the state of nature using available sensory data; for
simplicity, we ignore ordinary “honest” mistakes. The actions
of a deceiver cause a targets inferences about values of state
variables to differ from the true values. These actions are
modeled by a transition probability pBA, which is the fraction
of successful deceptions out of all deception attempts. We
assume that this probability is measurable and known to both
deceivers and deception targets.

A. Examples and Further Discussion

As a model for deception, the Z-channel of Figure 1 is,
we believe, as general and valid a description of deception
as Definition 1. To illustrate how our model can be used to
describe a specific deception, consider a salesperson with a
large number of items to sell. Some of the items happen to
be of low quality, and the salesperson deceptively portrays
these low quality items as high quality items. Here the state
variable of interest is the quality of the item being sold in any
given sales encounter, and this state variable can take on the
values “High Quality,” denoted B, and “Low Quality,” denoted
A, with probabilities pA and pB = 1 − pA respectively. As
with transition probabilities, we assume that these “symbol” or
“input” probabilities are measurable and thus known to both
targets and deceivers. We also presume that if the salesperson
were absent, or not deceptive, a purchaser would correctly

determine a given items quality. That is, when no deception
attempts are made the target observes the environment in a
noiseless, or error-free, way.

However, a deceptive salesperson introduces noise into this
sensor, with successful deceptions resulting in some number
of low quality items appearing, to a purchaser, as high quality.
The relative frequency at which this deception succeeds–that
is, the relative frequency at which low quality items appear as
high quality–is given by the transition probability pBA.

In order for this deception to be attempted, it is necessary
that the state variable hold the value A. That is, the salesperson
can only attempt to make a low quality item appear as high
quality when “pitching” a low quality item; the deception
cannot be applied to a customer who is considering the pur-
chase of what happens to be a high quality item. Because the
deceivers actions can only cause one type of error, deceptions
of this type–that is, those that can be modeled as a Z-channel–
are referred to as one sided deceptions. We denote the value A
as the precipitating value for the deception (though it might
also be termed the actual value). The value A is a sort of
precondition necessary for launch of the deception. Value B
is the false version of reality referred to in Definition 1. We
refer to B as the “false” or bogus value that the deceiver uses
to mask, or disguise, value A.

The term “bogus” is just a label for a specific value of a
state variable, and this label has meaning only with respect
to a particular precipitating value in a particular deception.
Of course, a state variable may actually take on the value
B, an example being, again, a customer who happens to be
considering a high quality item for purchase. More generally,
the state variable in question may take on a value unrelated to
the deception; that is, the state variable may take on a value
that is distinct from the precondition for a given deception,
and distinct from the bogus value for that deception. In our
“deceptive salesperson” example, every item for sale is either
high or low quality; we allow no other possibilities. For any
specific deception we will, for simplicity, consider only the
specific version of reality that acts as a pre-condition for the
deception, and the false version of reality associated with the
deception. In effect we are conditioning all probabilities on the
event A∨B. This assumption allows us to treat deception as a
binary channel, as opposed to an m-ary channel in which only
a single transmitted symbol is subject to noise. It is because
the precipitating and false versions of reality are mutually
exclusive, and because we are interested only in cases where
one or the other hold, that the mathematical tools developed
for binary communication system can be applied to deception.

Income tax evasion is another deception that can be de-
scribed in terms of a Z-channel. In this case, a deceptive
taxpayer presents to the taxing agency evidence (in the form of
false statements, false documents, etc.) for an incorrectly low
value of income. The state variable of interest is the income
of the taxpayer, which can take on the value A, “High,” or B,
“Low.” The transition probability pAB is the rate at which
high income tax payers successfully portray themselves as
low income. The tax agent who examines the claim must
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Fig. 3. Conditional entropy for Z-channel as a function of transition
probability pAB and input probability pA = 1−pB . Contours follow
constant H(X|Y ) values. This surface is not symmetric about pA =
1/2.

evaluate all the available evidence (both evidence provided
by the taxpayer, and that available from other sources) to
determine the actual value of income. Only a high income
taxpayer is capable of attempting this deception.

As with income tax evasion and sales of low quality
items, camouflage can be modeled once we determine the
precipitating value A and the bogus value B. For camouflage,
some spatial region is being monitored by a sentry, and the task
of the sentry is to determine whether an unauthorized person
is present, a value that can be denoted A, or no unauthorized
person is present, B. This deception can only be carried out
by someone who is in the spatial region.

As a final example of a one-sided deception, consider
identity theft. Many cases of social engineering [5] involve
a deceiver who assumes the identity of an “insider.” The state
variable of interest here can take on either the value “this
person has authority” which we’ll denote B, or alternately
“this person does not have authority,” denoted A. The tran-
sition probability pAB then represents the rate at which an
unauthorized person is successful at being accepted as a person
with authority.

IV. CONDITIONAL ENTROPY AS A MEASURE OF
DECEPTION PERFORMANCE

The Z-channel model allows us to evaluate deception sce-
narios in the same ways we evaluate communication systems.
Though communication channels are often characterized in
terms of mutual information or capacity, we will use the
closely related concept of conditional entropy because we
believe it to more directly describe deception. In a given
deception scenario, the conditional entropy H(X|Y ) indicates
the number of possible sequences of values of the state variable
of interest that could have caused the sequence of inferences
made by the target. To simplify terminology, we will refer

to a “sequence of values” of a state variable as an SOV, and
we will refer to a “sequence of inferences” as an SOI. Thus,
an SOV is associated with the environment, and an SOI is
associated with the deception target. In a rough sense, the
deception target wants and expects its SOI to the SOV, but
the deceiver attempts to cause the SOI to systematically differ
from the SOV.

When pAB = 0 in Figure 1, we have H(X|Y ) = 0,
and there is either no deceiver, or the deceiver is completely
ineffective. In this case, there is 2N ·0 = 1 possible SOV’s that
could have caused any particular SOI. Similarly, when pA = 0
or pA = 1, there is no uncertainty about the value of the state
variable–the state variable never changes–and so again there
is only one SOV, no matter what the observations imply.

A deceiver who is always successful is characterized by
pAB = 1 and H(X|Y ) = 1. In this case, the deception target
always decides that the bogus state of nature, state B, is in
effect. Since the SOV and the SOI are completely independent,
the number of SOV’s that could have caused any particular
SOI depends only on the probability pA.

The Z-channel model of deception and the conditional en-
tropy associated with it open many opportunities for analysis.
The number of SOV’s that could have caused a particular
SOI increases exponentially with the number of deception
attempts, and the conditional entropy is the rate of this expo-
nential growth. Even though the number of SOV’s increases
exponentially with the number of deception attempts, when
H(X|Y ) < 1 the number of SOV’s increases more slowly than
the total number of possible sequences. Thus, as the number of
deception attempts increases, the number of SOV’s associated
with a given SOI becomes an arbitrarily small fraction of the
total number of possible sequences.

Our Z-channel model implies that the actual sequence of
inferences realized in a long sequence of deception attempts is
an arbitrary member of the class of possible SOI’s. That is, the
actual SOI realized by the deception target (or the deception
target community) is no more probable and no less probable
than any other sequence of inferences associated with a given
set of input and transition probabilities. The actual SOI is not
distinguished in any way from any other possible SOI.

A given value of conditional entropy can be achieved by
many combinations of pA and pAB . As shown by the contours
in Figure 3, a fixed value of H(X|Y ) can be maintained in
spite of changes in pA if compensating changes to pAB can
be made. In a similar way changes in deception performance
due to changes in pA and/or pAB can be evaluated, as can
cost effectiveness of proposed changes to, say, pAB .

This model allows analysis of compound deceptions, which
are multiple sub-deceptions coupled together in series or
parallel. It also provides insight into “averages” of deceptions.
Averages of deceptions are interesting because conditional en-
tropy is a concave function of the input probabilities. Consider
two distinct one-sided deceptions with transition probabilities
p1,AB and p2,AB , and conditional entropies H1(X|Y ) and
H2(X|Y ). In regions where conditional entropy is a concave
function of the transition probabilities, the average conditional
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Fig. 4. Conditional entropy for a Binary Symmetric Channel as a
function of transition probability pAB = pBA and input probability
pA = 1 − pB . Contours follow constant H(X|Y ) values. Because
pA = 1 − pB , the conditional entropy shown here is for a special
case of the channel shown in Figure 2

entropy (H1 +H2)/2 will be less than the conditional entropy
associated with pAve ≡ (p1,AB + p2,AB)/2. This implies that
a community of deception targets should prefer to distribute
themselves uniformly between two deceivers, rather than com-
mit themselves to a single deceiver characterized by pAve.

V. SYMMETRIC COMPLEMENTS AND SYMMETRIC
DECEPTIONS

Although only one deception is being explicitly modeled
in Figure 1, there are two distinct deceptions possible with
the values A and B shown. As the figure stands, the deceiver
causes value B to appear when value A is actually in effect.
However, another possible deception is to cause value A to
appear to hold when value B actually does. In other words,
Figure 1 portrays only one of the two possible Z-channels that
can be constructed between a binary input and binary output.

For most deceptions, the associated symmetric complement
does not support, and may actually counter, the deceivers
interests. For example, the deceptive portrayal of a low quality
item as high quality has, as a symmetric complement, the
portrayal of a high quality item as low quality, and the
symmetric complement of income tax evasion is the depiction
of a low income individual as one of high income.

However, there are some conditions under which a decep-
tion and its symmetric complement can together support the
interests of a deceiver better than either deception alone. An
example occurs in the following exchange over the the use
of “dummy” aircraft to divert attacks away from real aircraft
[14].

Sometime around mid-1942, Major Oliver Thynne
was a novice planner with Colonel Dudley Clarke’s “A”
Force, the Cairo-based British deception team. From intel-
ligence, Thynne had just discovered that the Germans had
learned to distinguish the dummy British aircraft from the
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Fig. 5. Conditional entropy for Z-channel and Binary Symmetric
Channel with pA = 1 − pB = 1/2. These curves are essentially
“slices” through the surfaces in Figures 3 and 4.

real ones because the flimsy dummies were supported by
struts under their wings. When Major Thynne reported this
to his boss, Brigadier Clarke, the “master of deception,”
fired back

“Well, what have you done about it?”
“Done about it, Dudley? What could I do about it?”
“Tell them to put struts under the wings of all the real

ones, of course!”
Here dummy aircraft are used to deceive enemy attackers

about the numbers and locations of real aircraft, with the state
variable being items on a runway, with possible values “real
aircraft” and “dummy aircraft.” The only error possible for
the deception targets (the attackers) is to mistakenly believe
that a dummy aircraft is a real aircraft; the deception is thus
one-sided.

However, this one-sided deception is not very effective:
it is impractical for the British defenders to increase pAB

to an acceptable level. However, sheer intuition suggests
that the original deception be combined with its symmetric
complement. The one-sided deception is imperfect, and so the
attackers tend not to make the only mistake they can make
under this deception: namely, the attackers tend not to believe
that the dummy aircraft are real. However, the symmetric
complement makes the attackers vulnerable to two types of
mistakes: dummy aircraft can be mistaken for real, and real
aircraft can be mistaken for dummy.

In those cases where a deception along with its symmet-
ric complement “make sense,” the two acting together can
potentially provide a deceiver with increased performance
and flexibility. This can be seen by comparing Figure 3, the
conditional entropy associated with a one-sided deception,
with Figure 4, the conditional entropy associated with a BSC
with pAB = pBA. (Note that Figure 4 is the conditional
entropy for a special case of the channel shown in Figure 2.)
The deceiver wants H(X|Y ) to be as large as possible. When
H is one, slope is zero for BSC, but has a non-zero value
for Z Channel. This means that for a symmetric deception,
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want to be successful “about” half the time; for a one-sided
deception, need to be successful all the time, or performance
drops off. That is, a one-sided deception is “fragile” compared
to a symmetric deception. This is illustrated in Figure 5.

VI. DECEPTION FOR COMPUTER SECURITY

The analysis methods described above can be applied to
two deception-based techniques for computer security that
we are developing at the Naval Postgraduate School. These
two techniques are False Honeypots, which can be used as
a sort of “inoculation” against computer intrusions, and the
Spoofing Channel which provides a method for responding to
a successful intrusion once it has been detected.

A. Honeypots and False Honeypots
One of the most effective ways of gathering information

about computer intruders is through the use of honeypots [3],
which are computers placed on a network for the sole purpose
of being broken into. Honeypots contain no information of
value, and are usually highly instrumented so that the maxi-
mum amount of information about intruders and their activities
can be gathered. Most computer intruders avoid honeypots
to protect their intrusion techniques, which usually require
significant expertise to develop. Honeypots are often “tricked
out” to appear as a non-honeypot computer containing valuable
information.

A honeypot thus deceptively appears as an ordinary com-
puter, and in Figure 1 B can be assigned the value “this
computer is ordinary,” and A can be assigned the value
“this computer is a honeypot.” The symmetric complement
of this deception is to portray an ordinary computer as a
honeypot. Deployment of this symmetric complement has
the potential to reduce or eliminate the value of a computer
intruders observations about whether a successfully compro-
mised computer is an ordinary computer or honeypot. That
is, the intruders observations about the machine they have
broken into, gathered by examining all different aspects of
the machine, would provide little or no useful guidance for
determining whether the machine is a honeypot or an ordinary
computer.

B. Spoofing Channels
A spoofing channel is similar to an ordinary communication

channel: both accept inputs consisting of sequences of sym-
bols, and both deliver outputs consisting of strings of symbols.
These channels differ in how their outputs are related to their
inputs. The output of a communication channel allows the
input to be approximated, and ideally, to be perfectly recon-
structed. In essence, the input to a communication channel can
be thought of as a “choice” of some member of a set, and the
output aids, to a greater or lesser extent, in determining that
choice.

In contrast, the output of a spoofing channel is only required
to have the same statistical structure as the input. That is, the
output of a spoofing channel is only required to have the same
relative frequency of individual symbols, of symbol pairs, of

symbol triplets, of symbol quadruplets, and so on, as the input.
There need not be any stronger relationship between the input
and the output of a spoofing channel.

Functionally, a spoofing channel is like a communication
channel in that both resolve uncertainty, but a spoofing channel
resolves uncertainty in the wrong way. Alternately, a spoofing
channel can be thought of as a communication system that is
broken, but such that the user at the receiving end cannot tell
that it is broken.

We believe the spoofing channel to be a valuable deception-
based information security tool, with perhaps its most ob-
vious application as an Intrusion Response System (IRS).
Whenever a computer Intrusion Detection System (IDS) such
as SNORT [12] detects an in-progress intrusion, the system
administrator responsible for the compromised machine must
choose one of two unappealing courses of action. One option
is to immediately drop the connection to the intruder, which
ensures that sensitive information is protected to the maximum
extent possible. This option has the significant disadvantage
that the intruder is unequivocally notified that they have
been detected. It would be much better if the connection
could be maintained and the intruders activities on the target
machine observed. This could aid forensic work and provide
guidance for preventing future intrusions. However, this option
is unacceptable because it leaves sensitive data vulnerable.

An IRS based on the spoofing channel ensures that an
intruder never receives an original document from the compro-
mised computer. Instead, an intruder would be able to retrieve
or manipulate only spoofs, or impersonations, of original docu-
ments. The material made available to the intruder would have
the same statistical structure as the original, but no stronger
relationship. Sensitive material would thus be protected, but it
would be difficult or impossible for an intruder to tell that
it was bogus. A spoofing channel does not have to work
perfectly to be useful as an intrusion response system; forcing
an intruder to spend time and effort to determine the validity
of collected data can be counted as a success.

Close relatives of the spoofing channel have been observed
“in the wild.” Examples include the classic spoof created by
hand by Alan Sokal [13], the SCIgen software for automat-
ically generating random computer science research papers
[9], and the ELIZA program. These examples are functionally
equivalent to spoofing channels that have built-in repositories
of non-spoofed data.

The most significant characteristic of the spoofing channel is
that it exploits for deception the uncertainty that conventional
communication resolves. The output of a channel by itself
provides no direct evidence for deciding whether that channel
is communicating or spoofing. That is, a channels output is
not a useful observation for deciding whether that channel is
delivering the associated input, or a statistically valid spoof of
that input. The only tool available at the output of a channel for
deciding whether to treat it as a communication or a spoofing
channel is the prior probabilities.

Our work so far has focused on spoofing channels for natu-
ral language text. Two fundamental techniques have suggested
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TABLE I
SUMMARY OF DECEPTION EXAMPLES.

State (Precipitating, Symmetric
Example Deceiver Target Variable X Bogus) Values Deception Complement
Sale of Quality Item is (Shoddy, Shoddy Item High Quality Item
Shoddy Item Seller Purchaser of Item High Quality) Promoted as High Qual. Promoted as Shoddy
Tax Tax Income of Income is High Income Taxpayer Low Income Taxpayer
Evasion Taxpayer Agent Taxpayer (High, Low) Posing as Low Income Posing as High Income

Location Intruder is (In, Intruder Appears Not Intruder Appears to be
Camouflage Intruder Sentry of Intruder Not In) Region In Region when Is In Region When Not
Identity Person w/o Identity Claimant (Is Not, Person w/o Authority Person w/Authority
Theft Authority Functionary of Claimant Is) Authorized Claims Authority Professes None
Runway Runway Attacking Status of Runway (Is, Usable Runway Unusable Runway
Strafing Defenders Pilots Runway Is Not) Usable Disguised as Unusable Disguised as Usable

Computer Computer Type of Computer is Honeypot Disguised as Ordinary Computer
Honeypot Administrator Intruder Computer (Honeypot, Ordinary) Ordinary Computer Disguised as Honeypot
Fake Computer Computer Type of Computer is Ordinary Computer Honeypot Disguised as
Honeypot Administrator Intruder Computer (Ordinary, Honeypot) Disguised as Honeypot as Ordinary Computer
Spoofing Computer Computer Status of Intrusion (has, has Bogus Information Valid Information
Channel Administrator Intruder Intrusion not) been Detected Delivered as Valid Delivered as Bogus

themselves for automatic generation of spoofs of natural
language text documents. One technique for modifying a
documents meaning while maintaining its “style” structure
is through manipulation of the target documents semantic
structure. This is intuitively the most straightforward approach
to changing the meaning of a document while maintaining
the same “style.” An example of this sort of technique would
consist of negating and un-negating some particular subset of
assertions in the subject document.

Another technique for automatically changing a documents
meaning is through manipulations based on syntactic structure.
A technique of this sort might consist of simply swapping two
successive noun phrases (which may appear in the same, or
in different, sentences). This technique depends heavily on
pareidolia, which is the psychological phenomena of finding
meaning in random and presumably ambiguous patterns [6].

VII. CONCLUSION

In this paper we have shown how the existing theory
of communication can be used, almost “as is,” to describe
deception. Based on a natural and general definition of decep-
tion, our model clarifies the previously obscure relationship
between deception and communication, and establishes that
every deception has a symmetric complement. Ordinary (i.e.,
one-sided) deceptions can, when always successful, cause
observations made by a deception target to become worthless;
the observations become no better than the flip of a coin in
guiding the targets activities. However, this situation is fragile
in the sense that even isolated failures on the part of the
deceiver are almost inevitably

In those cases where a deception and its symmetric comple-
ment can be sensibly deployed together, a targets observations
of the environment can be made worthless in a stable, or
robust, way: as above, the observations of a target can be
made no more valuable than information gained by flipping a
coin, but in this case isolated failures by the deceiver may be
difficult for the target to exploit. However, if a deceiver moves

beyond the point at which observations become worthless to
a point where there is a systematic correlation between the
false version of reality and the actual version of reality, the
deceiver becomes vulnerable to counter-deception techniques.
This situation is analogous to the minimax solution of a game.

Even more interesting than the specifics presented in this
paper are the many open questions that remain. A few
outstanding topics include the relationship of rate distortion
theory [1] to deception; analysis of deception as a game [4]
with payoffs quantified by mutual information; models of
deception using continuous state variables; and the influence
of deception on the stability of signaling systems [10].
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